Les Carrés Magiques

Table des matières

1 Introduction
 1.1 Définition .. 1
 1.2 Histoire .. 2

2 Une méthode de résolution (de Maxime Ancelin) ... 2
 2.1 Résolution du carré de 3 et définitions ... 3
 2.1.1 Total T d’une ligne, colonne ou diagonale 3
 2.1.2 La "matrice serpent" ... 3
 2.1.3 Représentation d’une solution ... 7
 2.2 Carré de 4 .. 8
 2.3 Carré de 5 ... 9
 2.4 Carré de 6 .. 10
 2.5 Carré de 7 ... 10
 2.6 Carré de 8 ... 11
 2.7 Carré de 9 ... 12
 2.8 Carré de 10 ... 13
 2.9 Carré de 11 .. 14
 2.10 Carré de 12 ... 14

3 Carrés magiques avec des propriétés additionnelles .. 16
 3.1 Les carrés diaboliques ... 16
 3.2 Les carrés bimagiques .. 17
 3.3 Les carrés trimagiques ... 19
 3.4 Les carrés multimagiques 19
 3.5 Le carré magique de Skalli 20
 3.6 Le cube magique ... 20

1 Introduction

1.1 Définition

Un carré magique d’ordre n est un tableau carré, formé de n^2 cases, donc de n lignes et n colonnes. Dans chaque case est écrit un nombre, de telle sorte que les n^2 premiers entiers soient écrits et que les sommes des nombres de chaque ligne, colonne, et des deux diagonales, soit les mêmes.
1.2 Histoire

On trouve les premiers carrés magiques en Chine vers 3000 av. J.-C. Pour les Chinois, le carré magique symbolise l’harmonie de l’univers. Ce carré d’ordre 3 se nomme Lo Shu.

Voici une version de l’histoire de "Lo Shu"

Lo : nom d’une rivière
Shu : signifie "livre"

Jadis en Chine, il y eut une très grande inondation.

Pour calmer sa colère, les gens donnent des offrandes au dieu de la rivière "Lo", l’un des fleuves en crue.

Mais, à chaque fois, une tortue sort de la rivière et fait le tour des offrandes.

Le dieu de la rivière refuse de considérer cette offrande, jusqu’à ce qu’un jour, un enfant observe les formes curieuses sur la carapace de la tortue. c’est à ce moment qu’ils comprirent qu’il fallait mettre 15 offrandes.

À propos Philip I.S. Lei - Hong-Kong

Le premier carré d’ordre 4 apparaît au Xème siècle en Inde.

Les musulmans utilisent les carrés magique d’ordre 5 en mettant le 1 au centre du carré, car c’est un symbole d’Allah. Le carré central restait blanc, car Allah ne doit pas être représenté.

Ce sont les arabes qui considéreront les carrés magiques non plus comme des symboles mais plutôt comme des objets mathématiques.

Puis, les carrés magiques arriveront en occident, où ils seront utilisés à la Renaissance par un alchimistes (Cornélius Agrippa), qui leur donnera une signification astronomique.

Chez les Roses Croix, ils servent à masquer le chiffre de la Bête (=666) dans le carré magique de 6 x 6 = 36 cases (somme = 111).

2 Une méthode de résolution (de Maxime Ancelin)

Entre les années 2000 et 2003 je me suis pris de passion pour les carrés magiques. J’ai mis au point une méthode de résolution géométrique, simplement par intuition et avec un minimum de calculs mathématiques.
Ce travail de recherche que je viens de réaliser avec mon camarade m’a permis de revenir sur certains carrés et de les améliorer, ainsi que d’approfondir mes méthodes de résolution.

2.1 Résolution du carré de 3 et definitions

2.1.1 Total T d’une ligne, colonne ou diagonale

Le total de tous les nombres composant le carré de 3 est

\[\sum_{i=1}^{9} i = 45 = 3 \times 15 \]

Le total de chaque ligne, colonne ou diagonale est donc \(T = \frac{45}{3} = 15 = 3 \times 5 \)

5 occupe la case centrale, les chiffres qui gravitent autour totalisent deux à deux 10, ils sont complémentaires.

On peut généraliser : pour tout carré d’ordre \(n \), \(T = \frac{1+n^2}{2} \times n = \frac{n+n^3}{2} \)

2.1.2 La "matrice serpent"

Définition : Une "matrice serpent" d’ordre \(n \) est une certaine disposition de \(n^2 \) nombres dans une grille carrée de coté \(n \).

Pour avoir une "matrice serpent" d’ordre \(n \), on doit écrire les nombres de 1 à \(n^2 \) dans l’ordre croissant, en écrivant de gauche à droite sur les lignes impaires et de droite à gauche sur les lignes paires.

La "matrice serpent" est un point de départ pour résoudre les carrés magiques.

Une fois la matrice écrite, on calcule les totaux des lignes, colonnes et diagonales, comme si on vérifiait un carré magique. On observe alors des écarts sur certaines lignes, colonnes et/ou diagonales. Ces écarts sont symétriques par rapport à la ligne verticale et à la ligne horizontale passant par le centre du carré.
"Matrice serpent" d'ordre 3, avec les écarts par rapport à T calculés

En déplaçant certains nombres, de manière symétrique par rapport à ces deux axes passant par le centre du carré, on peut "rééquilibrer" les nombres, c'est à dire rétablir le bon total pour chaque ligne, colonne et diagonale.
On obtient alors le carré de magique 3:

```
\begin{array}{ccc}
8 & 7 & 2 \\
1 & 5 & 9 \\
8 & 3 & 4 \\
\end{array}
```

Macro excel pour créer une matrice serpent d'ordre n

```vba
Sub ligneImpaire(ByVal n As Long, ByVal h As Long)
    Dim i As Long
    For i = 1 To n
        Cells(h + 3, i + 3).Value = n * (h - 1) + i
        Cells(h + 3, i + 3).Orientation = 0
    Next i
End Sub

Sub lignePaire(ByVal n As Long, ByVal h As Long)
    Dim i As Long
    For i = 1 To n
        Cells(h + 3, i + 3).Value = n * h - (i - 1)
        Cells(h + 3, i + 3).Orientation = 0
    Next i
End Sub
```

Sub matSerp ()
Dim h As Long
Dim n As Long
n = Application.InputBox("n_:", Type:=1)
For h = 1 To n
 If h Mod 2 <> 0 Then
 ligneImpaire n, h
 Else
 lignePaire n, h
 End If
Next h
End Sub

T = ((1 + n*n) / 2) * n = (n + n^3)/ 2
Sub totauxMatSerp()
Dim h As Long
Dim n As Long
Dim i As Long
Dim Td As Long
Dim T As Long
n = Application.InputBox("n_:", Type:=1)
T = (n + n * n * n) / 2
Cells(2, 2).Value = "T=" & T
For h = 1 To n
 'horizontales
 For i = 1 To n
 If i = 1 Then
 Td = 0
 End If
 Cells(h + 3, n + 4).Value = "-->"
 Td = Cells(h + 3, i + 3).Value + Td
 If i = n Then
 Cells(h + 3, n + 5).Value = Td - T
 Cells(h + 3, n + 5).Orientation = 0
 End If
 Next i
Next h
For i = 1 To n
 'verticales
 For h = 1 To n
 If h = 1 Then
 Td = 0
 End If
 Cells(4 + n, i + 3).Value = "-->"
 Cells(4 + n, i + 3).Orientation = -90
 Td = Cells(3 + h, i + 3).Value + Td
 If h = n Then
 Cells(n + 5, i + 3).Value = Td - T
 End If
 Next h
Next i
Cells(n + 5, i + 3).Orientation = 0
End If
Next h
Next i
For i = 1 To n 'diagonale hg bd
 If i = 1 Then
 Td = 0
 End If
 Td = Cells(3 + i, i + 3).Value + Td
 If i = n Then
 Cells(n + 5, n + 5).Value = Td - T
 Cells(n + 5, n + 5).Orientation = 0
 End If
Next i
Cells(n + 4, n + 4).Value = "-->"
Cells(4 + n, n + 4).Orientation = -45
For i = 1 To n 'diagonale bg hd
 If i = 1 Then
 Td = 0
 End If
 Td = Cells(4 + n - i, i + 3).Value + Td
 If i = n Then
 Cells(n + 5, 2).Value = Td - T
 Cells(n + 5, 2).Orientation = 0
 End If
Next i
Cells(n + 4, 3).Value = "<--"
Cells(n + 4, 3).Orientation = 45
End Sub
2.1.3 Représentation d'une solution

Une fois un carré magique trouvé, on peut schématiser sa solution, qui resservira pour résoudre des carrés de plus grand ordre. Voilà deux manières de représenter les solutions :

Schéma des déplacements : Un schéma de déplacement indique les déplacements de nombres d'une "matrice serpent" afin d'avoir un carré magique.

![Schéma des déplacements du carré magique d'ordre 3](image)

Légende :

- ❯ échange
- ↳ déplacement vers
- ○ ne bouge pas

Schéma des déplacements du carré magique d'ordre 3

Signe du carré magique : Le **signe** d'un carré magique est obtenu en reliant dans l'ordre croissant par des segments les nombres de 1 à n^2 qui composent un carré magique.

![Signe du carré de 3](image)
2.2 Carré de 4

Le principe de résolution est à peu près le même que pour le carré de 3. Tout d’abord, on pose la matrice serpent d’ordre 4 (générée ici sous Excel à l’aide de la macro précédemment présentée).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td></td>
<td>-8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

On rééquilibre cette matrice, on obtient alors un carré d’ordre 4. Plusieurs solutions sont possibles. Ci-dessous on obtient un motif symétrique lorsque en traçant le signe du carré, utile pour plus tard.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>14</th>
<th>15</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Voici les représentations de ce carré :
2.3 Carré de 5

Pour résoudre le carré de 5, on va se resservir du carré de 3 (soit de son shéma de déplacements, soit de son signe) qui va former le noyau du carré de 5. Pour créer ce noyau, on écrit la matrice serpent et on réorganise les nombres selon le signe du carré de 3 (ou le shéma de déplacement du carré de 3) situé dans le carré central d’ordre 3. Ce noyau est un carré d’ordre 3, de constante magique (total) = 3 × 13 = 39. Il nous restera plus qu’à calculer la couronne.

Un carré de 5 est :

<table>
<thead>
<tr>
<th>2</th>
<th>25</th>
<th>23</th>
<th>11</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>14</td>
<td>17</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>13</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>9</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>24</td>
</tr>
</tbody>
</table>

shéma de déplacement de la couronne extérieure du carré de 5
2.4 Carré de 6

Le carré de 6 est construit avec la même méthode que le carré de 5, c’est a dire en utilisant un carré d’ordre inférieur (ici le carré de 4) pour construire un noyau.

Un carré de 6 est :

\[
\begin{array}{ccccccc}
32 & 35 & 3 & 33 & 1 & 7 \\
12 & 11 & 28 & 27 & 8 & 25 \\
13 & 14 & 21 & 22 & 17 & 24 \\
19 & 20 & 15 & 16 & 23 & 19 \\
6 & 29 & 10 & 9 & 26 & 31 \\
30 & 2 & 34 & 4 & 36 & 5 \\
\end{array}
\]

shéma de déplacement de la couronne extérieure du carré de 6

2.5 Carré de 7

Pour résoudre le carré de 7, on utilise le signe du carré de 3 pour le noyau, puis le shéma de déplacement du carré de 5 pour une première couronne. Ensuite il reste à calculer la couronne externe, d’ordre 7. Un carré de 7 est :

\[
\begin{array}{ccccccc}
28 & 2 & 45 & 43 & 47 & 5 & 4 \\
4 & 12 & 37 & 38 & 27 & 10 & 36 \\
15 & 34 & 26 & 31 & 16 & 15 & 36 \\
1 & 9 & 17 & 25 & 33 & 41 & 49 \\
29 & 30 & 32 & 19 & 24 & 20 & 21 \\
42 & 40 & 13 & 11 & 29 & 38 & 8 \\
46 & 48 & 5 & 7 & 3 & 44 & 22 \\
\end{array}
\]

shéma de déplacement de la couronne extérieure du carré de 7
2.6 Carré de 8

Pour ce carré, il y a une méthode plus rapide que la méthode des couronnes. La constante magique est $260 = 2 \times 130$. On peut donc faire quatre carrés d’ordre 4 de constante magique 130. Pour cela, on écrit la matrice serpent d’ordre 8 et on réorganise selon le signe du carré de 4 les lignes complémentaires de la matrice septen (de même couleur ci-dessous).

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td>46</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>64</td>
<td>63</td>
<td>62</td>
<td>61</td>
<td>60</td>
<td>59</td>
<td>58</td>
<td>57</td>
</tr>
</tbody>
</table>

On obtient alors ce carré de 8 :

<table>
<thead>
<tr>
<th>1</th>
<th>62</th>
<th>63</th>
<th>4</th>
<th>9</th>
<th>54</th>
<th>55</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>50</td>
<td>58</td>
<td>5</td>
<td>16</td>
<td>51</td>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>60</td>
<td>7</td>
<td>6</td>
<td>57</td>
<td>52</td>
<td>15</td>
<td>14</td>
<td>49</td>
</tr>
<tr>
<td>61</td>
<td>2</td>
<td>3</td>
<td>64</td>
<td>53</td>
<td>10</td>
<td>11</td>
<td>56</td>
</tr>
<tr>
<td>25</td>
<td>38</td>
<td>39</td>
<td>28</td>
<td>17</td>
<td>46</td>
<td>47</td>
<td>20</td>
</tr>
<tr>
<td>32</td>
<td>35</td>
<td>34</td>
<td>29</td>
<td>24</td>
<td>43</td>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>36</td>
<td>31</td>
<td>30</td>
<td>33</td>
<td>44</td>
<td>23</td>
<td>22</td>
<td>41</td>
</tr>
<tr>
<td>37</td>
<td>26</td>
<td>27</td>
<td>40</td>
<td>45</td>
<td>18</td>
<td>19</td>
<td>46</td>
</tr>
</tbody>
</table>
2.7 Carré de 9

Ce carré magique a aussi une méthode de résolution assez simple. Prenons la matrice serpent d’ordre 9, divisée en 9 carrés d’ordre 3 :

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>36</td>
<td>35</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>50</td>
<td>49</td>
<td>48</td>
<td>47</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>71</td>
<td>70</td>
<td>69</td>
<td>68</td>
<td>67</td>
<td>66</td>
<td>65</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

Chacuns de ces carrés de 3 sont réorganisés internement selon le signe du carré de 3, puis sont réorganisés entre eux selon le signe du carré de 3. On a la même organisation a deux échelles différentes.
On obtient alors ce carré de 9 :

\[
\begin{array}{cccccccccc}
38 & 52 & 35 & 72 & 73 & 56 & 15 & 22 & 5 \\
34 & 38 & 54 & 55 & 71 & 75 & 4 & 14 & 24 \\
53 & 36 & 37 & 74 & 57 & 70 & 23 & 6 & 13 \\
18 & 19 & 2 & 42 & 49 & 32 & 66 & 79 & 62 \\
1 & 17 & 21 & 31 & 41 & 51 & 61 & 65 & 81 \\
20 & 3 & 16 & 50 & 33 & 40 & 60 & 63 & 64 \\
68 & 76 & 58 & 12 & 25 & 8 & 45 & 46 & 29 \\
58 & 68 & 73 & 7 & 11 & 27 & 28 & 44 & 46 \\
77 & 60 & 67 & 26 & 9 & 10 & 47 & 30 & 43 \\
\end{array}
\]

2.8 Carré de 10

Pour résoudre ce carré, on utilise la méthode des couronnes. Le noyau est obtenu en appliquant le schéma du carré de 8, ensuite on calcule la couronne extérieure. On obtient :

\[
\begin{array}{cccccccccc}
93 & 21 & 96 & 41 & 51 & 9 & 95 \\
30 & 12 & 67 & 68 & 15 & 22 & 77 & 78 & 25 & 71 \\
2 & 19 & 84 & 69 & 16 & 29 & 74 & 73 & 26 & 99 \\
31 & 85 & 18 & 17 & 82 & 75 & 28 & 27 & 72 & 70 \\
4 & 86 & 13 & 14 & 88 & 76 & 23 & 24 & 79 & 97 \\
100 & 42 & 57 & 58 & 45 & 32 & 67 & 68 & 35 & 1 \\
51 & 49 & 54 & 53 & 46 & 39 & 64 & 63 & 36 & 40 \\
36 & 55 & 48 & 47 & 52 & 65 & 38 & 37 & 62 & 3 \\
81 & 96 & 43 & 44 & 59 & 86 & 33 & 34 & 69 & 30 \\
5 & 80 & 11 & 60 & 50 & 95 & 54 & 10 & 92 & 8 \\
\end{array}
\]

13
2.9 Carré de 11

Pour ce carré magique, on utilise aussi la méthode des couronnes. Le noyau est obtenu en appliquant le schéma du carré de 9, ensuite on calcule la couronne extérieure. On obtient ce carré :

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>120</th>
<th>86</th>
<th>118</th>
<th>5</th>
<th>116</th>
<th>7</th>
<th>114</th>
<th>9</th>
<th>112</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>65</td>
<td>88</td>
<td>47</td>
<td>92</td>
<td>107</td>
<td>86</td>
<td>29</td>
<td>38</td>
<td>17</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>64</td>
<td>70</td>
<td>95</td>
<td>91</td>
<td>109</td>
<td>16</td>
<td>28</td>
<td>40</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>69</td>
<td>48</td>
<td>63</td>
<td>108</td>
<td>87</td>
<td>90</td>
<td>39</td>
<td>18</td>
<td>27</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>41</td>
<td>20</td>
<td>82</td>
<td>71</td>
<td>50</td>
<td>98</td>
<td>101</td>
<td>80</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>19</td>
<td>25</td>
<td>43</td>
<td>49</td>
<td>61</td>
<td>73</td>
<td>79</td>
<td>97</td>
<td>103</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>42</td>
<td>21</td>
<td>24</td>
<td>72</td>
<td>51</td>
<td>60</td>
<td>102</td>
<td>81</td>
<td>96</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>95</td>
<td>104</td>
<td>83</td>
<td>32</td>
<td>35</td>
<td>14</td>
<td>59</td>
<td>74</td>
<td>53</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>82</td>
<td>54</td>
<td>106</td>
<td>13</td>
<td>31</td>
<td>37</td>
<td>52</td>
<td>58</td>
<td>76</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>105</td>
<td>64</td>
<td>93</td>
<td>36</td>
<td>15</td>
<td>30</td>
<td>75</td>
<td>54</td>
<td>57</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>2</td>
<td>56</td>
<td>4</td>
<td>117</td>
<td>6</td>
<td>116</td>
<td>8</td>
<td>113</td>
<td>10</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>

2.10 Carré de 12

On obtient alors :

Une autre bonne solution est de prendre 9 carrés d’ordre 4 et de les organiser selon le signe du carré de 3.
3 Carrés magiques avec des propriétés additionnelles

3.1 Les carrés diaboliques

Un carré diabolique est un carré magique d’ordre n dans lequel la même constante magique peut être trouvée non seulement dans les lignes, les colonnes et les diagonales, mais aussi dans une variété de configuration régulière et géométrique (nous verrons plus tard). Prenons maintenant comme exemple le carré d’ordre 5.

Nous allons proposer une méthode permettant de construire un carré diabolique d’ordre 5, la démarche est la suivante :

1. placer le 1 n’importe où dans la grille.
2. pour la prochaine valeur on avance de un vers le haut et de deux vers la droite (quand on arrive à l’extrémité de la grille prenons par exemple l’extrémité droite on repasse à gauche).
3. Toutes les cinq cases après avoir placé un multiple de 5, on se déplace de un vers la droite et de un vers le bas (car sinon on retournerait vers un axe déjà occupé.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>24</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>16</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>13</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>10</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>2</td>
<td>11</td>
<td>25</td>
</tr>
</tbody>
</table>

Nous avons écrit au début de cette partie qu’un carré diabolique vérifiait les propriétés du carré magique mais aussi d’autres configuration. Il y a deux configurations possibles :

1. En additionnant tous les nombres formant le signe + dans le tableau on a le même total dans n’importe quelle zone (exemples les nombres en rouges dans le tableau).
2. En additionnant tous les nombres formant le signe X dans le tableau on a le même total dans n’importe quelle zone (exemple les nombres en bleu dans le tableau)

On constate bien que la somme des ces nombres donnent partout 65.

3.2 Les carrés bimagiques

Un carré est dit bimagique lorsque le carré obtenu en élevant au carré chacun de ses éléments reste magique.

Le plus petit carré bimagique connu est d’ordre 8.

*Exemple d’un carré bimagique d’ordre 8 :

<table>
<thead>
<tr>
<th>7</th>
<th>53</th>
<th>41</th>
<th>27</th>
<th>2</th>
<th>52</th>
<th>48</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>58</td>
<td>38</td>
<td>24</td>
<td>13</td>
<td>63</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>29</td>
<td>47</td>
<td>54</td>
<td>8</td>
<td>28</td>
<td>42</td>
</tr>
<tr>
<td>64</td>
<td>14</td>
<td>18</td>
<td>36</td>
<td>57</td>
<td>11</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>25</td>
<td>43</td>
<td>55</td>
<td>5</td>
<td>32</td>
<td>46</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>40</td>
<td>60</td>
<td>10</td>
<td>19</td>
<td>33</td>
<td>61</td>
<td>15</td>
</tr>
<tr>
<td>45</td>
<td>31</td>
<td>3</td>
<td>49</td>
<td>44</td>
<td>26</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td>34</td>
<td>20</td>
<td>16</td>
<td>62</td>
<td>39</td>
<td>21</td>
<td>9</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>2809</td>
<td>1681</td>
<td>729</td>
<td>4</td>
<td>2704</td>
<td>2304</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>144</td>
<td>3364</td>
<td>1444</td>
<td>576</td>
<td>169</td>
<td>3969</td>
<td>1225</td>
<td>289</td>
</tr>
<tr>
<td>2601</td>
<td>1</td>
<td>841</td>
<td>2209</td>
<td>2916</td>
<td>64</td>
<td>784</td>
<td>1764</td>
</tr>
<tr>
<td>4096</td>
<td>196</td>
<td>324</td>
<td>1296</td>
<td>3249</td>
<td>121</td>
<td>529</td>
<td>1369</td>
</tr>
<tr>
<td>625</td>
<td>1849</td>
<td>3025</td>
<td>25</td>
<td>1024</td>
<td>2116</td>
<td>2500</td>
<td>16</td>
</tr>
<tr>
<td>484</td>
<td>1600</td>
<td>3600</td>
<td>100</td>
<td>361</td>
<td>1089</td>
<td>3721</td>
<td>225</td>
</tr>
<tr>
<td>2025</td>
<td>961</td>
<td>9</td>
<td>2401</td>
<td>1936</td>
<td>676</td>
<td>36</td>
<td>3136</td>
</tr>
<tr>
<td>1156</td>
<td>400</td>
<td>256</td>
<td>3844</td>
<td>1521</td>
<td>441</td>
<td>81</td>
<td>3481</td>
</tr>
</tbody>
</table>

Lorsque l'on éleve tous les nombres qui le composent au carré, il reste magique
3.3 Les carrés trimagiques

Un carré est dit trimagique lorsqu’il reste magique en élevant ses termes au carré et au cube. Le premier carré trimagique connu est d’ordre 12.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>22</th>
<th>33</th>
<th>41</th>
<th>62</th>
<th>66</th>
<th>79</th>
<th>83</th>
<th>104</th>
<th>112</th>
<th>123</th>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>119</td>
<td>45</td>
<td>115</td>
<td>107</td>
<td>93</td>
<td>52</td>
<td>38</td>
<td>30</td>
<td>100</td>
<td>26</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>141</td>
<td>35</td>
<td>43</td>
<td>57</td>
<td>14</td>
<td>131</td>
<td>98</td>
<td>97</td>
<td>110</td>
<td>4</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>8</td>
<td>106</td>
<td>48</td>
<td>12</td>
<td>43</td>
<td>102</td>
<td>133</td>
<td>96</td>
<td>39</td>
<td>137</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>101</td>
<td>124</td>
<td>42</td>
<td>60</td>
<td>37</td>
<td>108</td>
<td>65</td>
<td>103</td>
<td>21</td>
<td>44</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>76</td>
<td>142</td>
<td>86</td>
<td>67</td>
<td>126</td>
<td>19</td>
<td>78</td>
<td>69</td>
<td>3</td>
<td>69</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>27</td>
<td>95</td>
<td>135</td>
<td>130</td>
<td>89</td>
<td>56</td>
<td>15</td>
<td>10</td>
<td>50</td>
<td>113</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>117</td>
<td>68</td>
<td>91</td>
<td>11</td>
<td>99</td>
<td>46</td>
<td>134</td>
<td>54</td>
<td>77</td>
<td>29</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>64</td>
<td>2</td>
<td>121</td>
<td>109</td>
<td>32</td>
<td>113</td>
<td>36</td>
<td>24</td>
<td>143</td>
<td>81</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>98</td>
<td>84</td>
<td>115</td>
<td>138</td>
<td>16</td>
<td>129</td>
<td>7</td>
<td>29</td>
<td>61</td>
<td>47</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>34</td>
<td>105</td>
<td>6</td>
<td>92</td>
<td>127</td>
<td>18</td>
<td>53</td>
<td>139</td>
<td>40</td>
<td>111</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>63</td>
<td>31</td>
<td>20</td>
<td>25</td>
<td>128</td>
<td>17</td>
<td>120</td>
<td>125</td>
<td>114</td>
<td>82</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

carré trimagique d’ordre 12

3.4 Les carrés multimagiques

Un carré est dit multimagique lorsqu’il reste magique si ses nombres sont élevés à n’importe quelle puissance. Le premier carré 4-magique, d’ordre 512, fut construit en mai 2001 par André Viricel et Christian Boyer ; puis, un mois plus tard, en juin 2001, Viricel et Boyer présentèrent le premier carré 5-magique, d’ordre 1024. Ils ont aussi présenté un carré 4-magique d’ordre 256 en janvier 2003, et un autre carré 5-magique, d’ordre 729, fut construit en juin 2003 par le mathématicien chinois Li Wen.
3.5 Le carré magique de Skalli

Les carrés magiques peuvent être intégralement constitués de nombres premiers. C’est le cas du carré magique de Skalli qui est aussi diabolique. La somme est également un nombre premier : 19577.

<table>
<thead>
<tr>
<th>5668</th>
<th>127</th>
<th>7547</th>
<th>5003</th>
<th>1031</th>
</tr>
</thead>
<tbody>
<tr>
<td>5009</td>
<td>1013</td>
<td>6579</td>
<td>139</td>
<td>7537</td>
</tr>
<tr>
<td>149</td>
<td>7549</td>
<td>4599</td>
<td>1019</td>
<td>5061</td>
</tr>
<tr>
<td>1009</td>
<td>5867</td>
<td>131</td>
<td>7559</td>
<td>5011</td>
</tr>
<tr>
<td>7641</td>
<td>5021</td>
<td>1021</td>
<td>9857</td>
<td>137</td>
</tr>
</tbody>
</table>

3.6 Le cube magique

Un cube est magique lorsque la somme des éléments des alignements, lignes et colonnes des différentes coupes horizontales (plans et étages), et des sections verticales orthogonales, est égale à une même constante.
Représentation d'un cube magique d'ordre 3 par ses plans horizontaux

Au travers de cette approche des carrés magiques, nous constatons qu'il n'y a pas de limites d'ordre de grandeur, de propriétés ni de dimension en ce qui concerne les carrés magiques.

Bibliographie :
- Les carrés magiques, de René Descombes
- wikipedia
- http://vilemin.gerard.free.fr/Wwwgymn/CarrMag/CMhistor.htm